On Appell sequences of polynomials of Bernoulli and Euler type
نویسنده
چکیده
A construction of new sequences of generalized Bernoulli polynomials of first and second kind is proposed. These sequences share with the classical Bernoulli polynomials many algebraic and number theoretical properties. A class of Euler-type polynomials is also presented. © 2007 Elsevier Inc. All rights reserved.
منابع مشابه
A new approach to Bernoulli polynomials
Six approaches to the theory of Bernoulli polynomials are known; these are associated with the names of J. Bernoulli [2], L. Euler [4], E. Lucas [8], P. E. Appell [1], A. Hürwitz [6] and D. H. Lehmer [7]. In this note we deal with a new determinantal definition for Bernoulli polynomials recently proposed by F. Costabile [3]; in particular, we emphasize some consequent procedures for automatic c...
متن کاملGeneralizations of the Bernoulli and Appell Polynomials
We first introduce a generalization of the Bernoulli polynomials, and consequently of the Bernoulli numbers, starting from suitable generating functions related to a class of Mittag-Leffler functions. Furthermore, multidimensional extensions of the Bernoulli and Appell polynomials are derived generalizing the relevant generating functions, and using the Hermite-Kampé de Fériet (or Gould-Hopper)...
متن کاملA new class of generalized Laguerre-based poly-Bernoulli polynomials
A new class of generalized Laguerre-based poly-Bernoulli polynomials are discussed with an attempt to generate new and interesting identities, some are in relation with Stirling number of the second kind. Different analytical means and generating function method is incorporated to derive implicit summation formulae and symmetry identities for generalized Laguerre poly-Bernoulli polynomials. It ...
متن کاملAppell Polynomials and Their Zero Attractors
∞ n=0 pn(x)t n or, equivalently, p′n(x) = pn−1(x). If g(t) is an entire function, g(0) 6= 0, with at least one zero, the asymptotics of linearly scaled polynomials {pn(nx)} are described by means of finitely zeros of g, including those of minimal modulus. As a consequence, we determine the limiting behavior of their zeros as well as their density. The techniques and results extend our earlier w...
متن کاملViewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
متن کامل